High Frequency Measurements Web Page
Douglas C. Smith

 page header graphic



Technical Tidbit - July 2012
Measuring Breakdown Voltage With an ESD Simulator
(Special simulator characteristics are needed)

Overview of test setup

Figure 1.
Test Setup for Measuring DC Voltage Breakdown of a Small AC Plug Style Transformer

Abstract: Measuring high voltage breakdown has many uses including tracking down the cause of equipment failure and ascertaining compliance to safety standards. Some ESD simulators can be used to measure DC breakdown voltage and have the advantage that they can measure breakdown to voltages in excess of 10,000 volts. Not all ESD simulators can do this and the special characteristics required are discussed and an example is given of how this method was used to track down an equipment problem.

Discussion: Figure 1 shows the details of measuring the breakdown voltage of a small AC plug style transformer of the type often used with small electronic equipment. In this case, a Fischer F-65 current probe was used to measure the waveshape of the breakdown current, but this is not necessary to measure breakdown voltage.

Many ESD simulators work by charging up a storage capacitor, often on the order of 150 pF, to the desired high voltage and then switching the charged capacitor to the tip of the simulator. Unfortunately, ESD simulators that work this way cannot be used to measure breakdown voltage accurately and many of them have digital controls that also complicate matters. What is needed is a simulator that keeps the storage capacitor connected to the tip at all times and charged through a low current, high voltage power supply.

The KeyTek MiniZap ESD simulator by Thermo Scientific is such a device. The storage capacitor is connected to the tip at all times and is charged by a low current, high voltage supply. The digital display is actually a voltmeter reading the tip voltage in real time. The MiniZap's analog controls (read that as "knobs") facilitate the breakdown voltage measurement.

The method is as follows:
  1. Connect the two nodes for the breakdown measurement between the tip of the MiniZap and its ground cable.
  2. Using air discharge mode, slowly raise the voltage setting of the MiniZap remembering that the display on the MiniZap is actually reading the DC voltage stress being applied to the circuit or device under test.
  3. At some point, the MiniZap fires and turns off the high voltage supply, signaling that a breakdown has occurred.
  4. The last reading on the display just before the MiniZap fired is the breakdown voltage of the circuit or device under test.
Figure 2 shows another example of a breakdown test on another small AC plug style transformer. It is probably best not to have your fingers on the circuit during the actual test, lest you measure your breakdown voltage.


Close-up of test setup

Figure 2. Test Setup for Measuring DC Voltage Breakdown of a Second Small AC Plug Style Transformer

Using an ESD simulator, like the KeyTek MiniZap, one can measure breakdown voltage up to 15,000 Volts. If you don't have an outright breakdown but just a leaky path, you will notice the device will load down the reading on the MiniZap, possibly making it impossible to reach the desired voltage.

Here is an example of how measuring breakdown voltage this way proved useful and time saving. I was working on a small embedded controller that used an electromechanical relay to operate a 240 VAC 60 Hz motor that rotated a sizable drum. The problem was that when the equipment was subjected to a  6 kV ringwave lightning surge test, the processor IC was often destroyed (burnt to a crisp).

The processor IC controlled a discrete transistor that operated the electromechanical relay which in turn applied the 240 VAC mains to the motor, so I suspected breakdown of the relay. I connected a MiniZap, on the test bench, from the contacts of a relay to its coil and slowly raised the voltage. The relay was rated at 6 kV, but at 5200 to 5400 Volts breakdown occurred between the coil and contacts! So the relay was not meeting its published specifications and was allowing the lightning surge to be applied directly to the processor circuit with predicable results.

Summary: Some, but not most, ESD simulators can be used to measure high voltage breakdown in circuits and devices. The KeyTek MiniZap is one such device. The MiniZap will measure breakdown voltages to 15,000 Volts, probably more than most uses require.

I am writing this from my new office in Boulder City, NV!!! I am doing morning 5 to 10 minute podcasts on technical topics most mornings I am in the office. These podcasts will appear on the home page of http://CircuitAdvisor.com by late morning except for days when I am not in the office. The first one has been posted under the headings of Free Audio, General Interest.

Equipment used in this Technical Tidbit:
  1. Thermo Scientific KeyTek MiniZap Electrostatic Discharge Simulator

Check out my public seminar offering in Boulder City, NV. This is one of the best seminar values around because the industry typical fee includes more than just the seminar and lunch, but airport transportation in NV, lodging in the historic Boulder City Dam Hotel and Museum, and breakfast and lunch each day. Click here for more details.


If you like the information in this article and others on this website, much more information is available in my courses. Click here to see a listing of upcoming courses on design, measurement, and troubleshooting of chips, circuits, and systems. Click here to see upcoming seminars in Boulder City, NV.

Boulder Dam Hotel and Museum
Our office, laboratory, and classrooms are located in the
----------
Historic Boulder City Dam Hotel and Museum
1305 Arizona Street, Boulder City, Nevada 89005
Phone: (702) 293-3510
----------
Come for a technical seminar, design review/troubleshooting, or just for a visit and mix a little history of the Old West with your work!


Hangar One
Our Silicon Valley associate office and lab are located at
----------
NASA-Ames Research Center
RMV Technology Group
Bldg. 19, Suite 1073, M/S 19-46C
Moffett Field, CA  94035


Is your product failing ESD testing? Attend my webinar on sources of error in ESD testing. This webinar covers problems and mistakes often made in testing products for ESD compliance that can cause a good product to fail when it should pass. The webinar is given as both a scheduled event and on-demand. Contact me at doug@dsmith.org for more details. Don't let your product fail ESD testing unnecessarily. This webinar is an easy, cost effective solution.
Need help with a design or additional training on technical subjects? Click on the image below to go to CircuitAdvisor.com, a new engineering resource for training, news, and fun.

CircuitAdvisor.com


Click here for a description of my latest seminar titled (now also available online as a WebEx seminar):

EMC Lab Techniques for Designers
(How to find EMC problems and have some confidence your system will pass EMC testing while it is still in your lab).



Top of page
Home

Questions or suggestions? Contact me at doug@dsmith.org
Copyright © 2012 Douglas C. Smith